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Abstract
Maasai and other Maa-speaking pastoralists in Kenya and Tanzania have a risk-pooling system that they refer to by their word 
for the umbilical cord (osotua). Gifts from one osotua partner to another are contingent on the recipient’s need and do not 
create any debt. We refer to such gifts as need-based transfers. Maa-speakers also have a system of debt-based transfers (esile) 
in which gifts must be repaid. We designed an agent-based model to compare the impacts on herd survival of need-based 
and debt-based transfers on networks of varying topologies and sizes and with different degrees of temporal correlation of 
shocks felt by the agents. We found that the use of need-based rather than debt-based transfers, greater network modularity, 
greater network size, and decreased correlation among shocks were associated with increased rates of survival.

Keywords Social networks · Risk pooling · Agent-based modelling · Need-based transfers · Small-scale societies · Kenya 
Tanzania

Introduction

To pool risk, Maasai and other Maa-speaking pastoralists in 
Kenya and Tanzania have a livestock-sharing system involv-
ing partnerships that they refer to by their word for umbilical 
cord: osotua (plural isotuatin; Cronk, 2007; Aktipis et al., 
2011, 2016; Hao et al., 2015a; Cronk et al., 2019). Many 
osotua partnerships begin in childhood. Maasai parents 
encourage their children to form friendships known as isir-
ito (singular: esirit). Isirito share food and exchange small 
gifts that may become more valuable as they become adults. 
If both parties agree, they then become isotuatin. Isotuatin 
rely on each other for help in times of need. For example, 
if a herder does not have enough livestock to support his 
family, he may ask one of his osotua partners for enough 
to bring his family up to the level necessary for survival. 
Transfers between osotua partners create neither credit nor 
debt, and Maasai interviewees insist that the concept of pay-
ment should never be invoked in an osotua relationship and 
that there is no expectation of balanced transfers even in the 

long run. Transfers occur only in response to requests, and 
requests must arise from genuine need and must be lim-
ited to the amount actually needed. Osotua relationships are 
imbued with respect, restraint, and a sense of great respon-
sibility (Cronk, 2007; Cronk et al., 2019).

People often try to establish osotua partnerships with peo-
ple in different ecological zones so that their risk profiles are 
complementary (see also Gulliver, 1955; Dixit et al., 2013). 
For example, highland areas are relatively well-watered, but 
they harbor more pathogens than do dryer lowland areas. 
Unfortunately, droughts and other calamities sometimes 
affect large areas. As a result, an individual herder may have 
trouble finding any isotuatin who are able to help. Such a 
situation of highly correlated shocks occurred among the 
Maasai during a nineteen-year period in the late 19th and 
early twentieth centuries that they refer to as Emutai, mean-
ing, roughly, “the wiping out” (Waller, 1988). Emutai was 
caused by a combination of drought and epidemics among 
both humans and their livestock and led to a breakdown of 
social relations and civil war among Maasai sections.

In addition to osotua, Maasai and other Maa-speakers 
have several other rules that govern property transfers in a 
variety of specific circumstances. Among Maasai living in 
Ngorongoro, a clan-based system of aid through livestock 
transfers called engelata (i.e., “choice,” Mol, 1996:79) has 
been documented (Potkanski, 2000). Several varieties of 
engelata exist. Engelata enkaputee (i.e., of the affines) is 

 * Marco Campennì 
 M.Campenni@exeter.ac.uk

1 Department of Psychology, Arizona State University, 
Tempe, AZ, USA

2 Department of Anthropology, Rutgers University, 
New Brunswick, NJ, USA

http://orcid.org/0000-0001-7649-4869
http://crossmark.crossref.org/dialog/?doi=10.1007/s10745-021-00273-6&domain=pdf


 Human Ecology

1 3

a way to raise bridewealth. Engelata ewoloto is a way for 
a clan to help a destitute family. The Maa-speaking Sam-
buru of northern Kenya refer to the lending of a cow’s 
milk to another household as keruu and the lending of the 
cow itself as ketaaro, while aitogaroo refers to the loan 
of a bull for breeding purposes, and ketapashaki refers to 
the immediate exchange of two animals, e.g., a steer for 
a cow. Livestock may also be transferred in the form of 
bridewealth and as compensation for crimes (Perlov, 1987; 
Potkanski, 2000). One type of livestock transfer that con-
trasts sharply with osotua is esile, which translates simply 
as “debt.” In esile, unlike in osotua, credit and repayment 
of debts are the essence of the relationship: both parties 
expect that the debt will be repaid. “An esile is like a 
bank” is a common expression among the Samburu that 
captures this idea (Perlov, 1987:186). As with bank loans, 
esile transfers, unlike ketapashaki, involve a delay between 
the loan and its repayment. Common reasons for requests 
of esile are the desire to make some cash by selling live-
stock or because one needs a specific type of animal that 
one does not already have for a particular ceremony.

Because many other pastoralist societies also have shar-
ing rules equivalent or similar to osotua and esile (Almagor, 
1978; Bollig, 1998, 2006; Dyson-Hudson, 1966; Flannery et 
al., 1989; Gulliver, 1955; Iyer, 2016; Moritz, 2016; Moritz 
et al., 2011), we henceforth follow Aktipis et al. (2016) and 
Cronk et al. (2019) in using a more general, less Maasai-
specific set of terms, referring to osotua as “need-based 
transfers” and esile as “debt-based transfers.”

Four previous efforts have been made to use computer 
simulations to model aspects of Maasai-style risk-pooling 
networks. In all of these simulations, agents begin with an 
amount of livestock that is slightly above a fixed thresh-
old for survival. Agents who drop below that threshold 
for a predetermined number of rounds (e.g., two) drop 
out of the simulation and are considered to have not sur-
vived, although in the real world such impoverished herd-
ers might instead supplement herding with other food 
sources such as hunting, gathering, and farming. During 
each round, herds grow, but they may also experience 
losses that simulate the impacts of droughts, diseases and 
thefts. Agents are also programmed with decision-making 
rules for how and when to transfer cattle that vary from 
simulation to simulation. Aktipis et al. (2011) created an 
agent-based model in which agents endowed with herds 
that grew and experienced occasional negative shocks 
were paired with each other in dyads. The model included 
four types of agents: (1) those that followed a need-based 
transfer rule (i.e., ask when in need, give if able); (2) those 
that never transferred anything; (3) those that asked their 
partner for cattle at a rate equivalent to the average ask-
ing rate among agents following a need-based asking rule 
and who requested a number of cattle equivalent to the 

mean amount given by agents in the need-based transfer 
runs; and (4) those that, when asked for help, gave a pro-
portion of their cattle that was equivalent to the average 
mean proportion given in the need-based transfer runs. 
Agents following the full need-based transfer rule survived 
longer than all other types of agents. Aktipis et al. (2016) 
also placed agents in dyads, finding that agents following 
need-based transfer rules outperformed those following 
debt-based transfer rules.

Different network features and correlation of disasters 
can affect the outcomes for agents sharing on networks 
using need-based transfer rules. Hao et al.  (2015a, b) 
found that agents arranged in a network and following a 
need-based transfer rule survived longer when those in 
need asked their wealthiest partner rather than a partner 
chosen at random and that greater network connected-
ness improved survival. Hao et al. (2015a, b) found that 
temporal correlation of disasters decreased the survival 
of need-based agents while spatial correlation of disas-
ters improved their survival. The authors attributed the 
improvement in survival when disasters are spatially cor-
related to a phenomenon they label “disaster masking”: A 
given disaster is likely to kill only a small, highly localized 
group of agents, leaving the rest to thrive while also clear-
ing agents out of a location where additional disasters are 
likely to strike in the future.

In the present paper, we build upon this previous work 
to address several questions. Like Hao et al. (2015a) and 
Hao et al. (2015b), we model agents on a network, but 
we also vary both network size and network topology. 
Like Hao et al. (2015b), we examine temporally corre-
lated disasters: It is clearly better if agents do not experi-
ence shocks simultaneously, but where is the threshold 
at which temporal correlation spells doom, and does that 
threshold change depending on the settings of the other 
parameters? Finally, like Aktipis et al. (2016) we com-
pare the survival of need-based transfer agents with that 
of debt-based transfer agents, but here we vary the sizes 
and topologies of social networks as well as the temporal 
correlations of disasters. Giving to those in need, often 
with no expectation of repayment, is found not only in the 
Maasai osotua system but also in many other risk-pooling 
systems documented ethnographically in small-scale soci-
eties around the world, which indicates that it may be 
adaptive in a wide variety of ecological and economic 
circumstances (Bird et al., 2002; Bollig, 1998, 2006; 
Cashdan, 1985; Cronk et al., 2019; Fafchamps, 2011; 
Fafchamps & Lund, 2003; Gulliver, 1955; Iyer, 2016; 
Smith et al., 2019; Wiessner, 1982). Here we investigate 
the performance of need-based transfer and debt-based 
transfer strategies on three different network topologies: 
regular networks, small-world networks and preferential 
attachment networks.
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We tested the following hypotheses:

1. Agents following a need-based transfers rule will sur-
vive longer than agents following a debt-based transfer 
rule.
2. Agents in larger networks will survive longer than 
agents in smaller networks.
3. Agents in more modular networks will survive longer 
than agents in less modular networks.
4. Agents that experience shocks that are less correlated 
temporally with shocks experienced by other agents in 
their networks will survive longer than agents that expe-
rience shocks that are more correlated temporally with 
shocks experienced by other agents in their networks.

Methods

We used NetLogo (Wilensky, 1999) to model a population 
of agents in networks with varying topologies (see Fig. 1). 
We included regular networks, small-world networks, and 
preferential attachment networks in our simulations. In 
regular networks, all individuals are connected to the same 
number of individuals within the network. In a small-world 
network, there are a number of connections that span across 
the network, leading to the phenomenon seen in the real 
world in which strangers can be linked through a small chain 
of acquaintances. We also included preferential attachment 
networks. Using the Barabási and Albert model (Barabási 
& Albert, 1999), we generated random scale-free networks 
using a preferential attachment mechanism, which preferen-
tially adds connections to nodes that are already well con-
nected (see glossary).

As in Aktipis et al. (2011, 2016) each node/agent in the 
network represents a household/family of approximately six 
individuals, and each link represents a connection to another 
household. The model is parameterized based on the ecology 
of East Africa, and the rules that agents use are based on the 
osotua (need-based transfer) and esile (debt-based transfer) 
rules used by Maasai.

During each time step (representing a year), households 
experience herd growth and potential shocks and losses. 
They also have an opportunity to ask for and give help to 
other households (see Fig. S1). An agent’s initial herd of 
70 grows or shrinks during each time step of the simula-
tion at a rate normally distributed around a mean of 3.4%. 
The minimum viable herd size was set at 64, based on 
estimates of a family’s caloric needs and productivity in 
the dry season. The maximum cattle herd size allowed in 
the model is 600, which represents a realistic approxima-
tion of the maximum cattle herd size for an average-sized 
household. During each time step there is also a chance 

of a loss (e.g., through a drought or a disease spreading in 
the herd). All of these parameters, including the likelihood 
and severity of these losses, were estimated based on Dahl 
and Hjort’s study of the actual dynamics of East African 
cattle herds (1976).

The model was run for 100-time steps. Across models 
we vary the probability, pshocks, that a loss is correlated 
(i.e., it affects all households at the same time) from 0 to 
1 with steps of 0.1.

We simulated both need-based and debt-based livestock 
transfers between households as follows:

Need-based transfer rule: Need-based transfer agents 
monitor their livestock holdings. If they drop below the criti-
cal threshold for livestock holdings, they ask their wealthi-
est partner for help (i.e., agents used a selective asking rule 
rather than a random asking rule as in Hao et al., 2015a); if 
they are asked for help and can afford to provide it without 
putting themselves below the critical threshold for survival, 
they do so. The pseudo-code (i.e., a description in natural 
language rather than computer code) for the need-based 
transfer rules were implemented as follows (as in Aktipis et 
al., 2016, Aktipis et al., 2011, and Hao et al., 2015a):

1. Need-based asking rule: Individuals ask their partners 
for livestock only if their current holdings are below the 
asking threshold (i.e., the minimum herd size of 64).

2. Need-based giving rule: Individuals give what is asked, 
but not so much as to put their herds below the giving 
threshold (also the minimum herd size of 64).

Debt-based transfer rule: Debt-based transfer agents 
also ask their wealthiest partner for help when they are in 
need, but otherwise, they differ from need-based transfer 
agents. Debt-based agents transfer cattle only if they are 
asked by a partner who is in good standing. These debt-
based agents keep track of the amounts they owe to and 
were owed by the other agents in their networks. Recipi-
ents of loans repay these loans as soon as they have enough 
livestock to do so without going below the sustainability 
threshold of 64 units. If five rounds go by after a trans-
fer without repayment, then the agent who gave the loan 
considers the ‘defaulting’ partner to no longer be in good 
standing and therefore does not provide a loan to that agent 
in the future. The pseudo-code for this rule is as follows:

1. Debt-based payback rule:

 If livestock have been previously transferred from 
the partner to the actor and the actor has enough 
to pay back without going below the sustainability 
threshold (resource min), the actor pays livestock 
back to his partner according to the actor’s repay-
ment probability
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2. Debt-based partner credit check rule:

 Checks whether a partner is in good standing, 
which includes not having exceeded tolerated 
delay or credit size (when applicable)

3. Debt-based asking rule:

 As with the need-based transfer asking rule, indi-
viduals ask their partners for livestock if their cur-
rent herd size is below the sustainability threshold 
of 64.

4. Debt-based giving rule:

 Response to partner. If a request is made, actors 
give if two conditions are met:

1. If no debt remains from a previous request and the 
partner is in good standing (meaning that previous 
debt had not existed for longer than tolerated delay)

2. The amount transferred cannot exceed the credit size 
extended to the partner

We varied four key parameters while keeping all other 
aspects of the simulations constant:

(1) Network topology: regular, small world, and prefer-
ential attachment.
(2) Network size: values of 30, 40, 50, 60, 70, 80, 90, 
and 100.
(3) Correlation of shocks: probabilities of 0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.
(4) Sharing rule: need-based transfers vs. debt-based 
transfers.

This yielded a total of 528 unique combinations of param-
eters for our simulations. For each of these 528 combinations 
of parameters, we ran the model 10,000 times.

Results

We varied four parameters: network topology, network size, 
sharing rule, and correlation of shocks. For each combina-
tion of these parameters, we tested the performance of two 
resource transfers rules, i.e., a need-based strategy and a 
debt-based strategy. Unless otherwise specified, all results 

refer to small-world networks, which are the default type of 
network used for these kinds of studies. Also, in the graphi-
cal presentation of our results, we often show only a subset 
of the full data because it is impossible to show the full 
dimensionality of the data given that we varied four param-
eters (network topology, network size, correlation of shocks, 
and the sharing rule).

In a separate set of simulations, we varied tolerated delay, 
sampling values from one year to 50 years of tolerated delay. 
The tolerated delay parameter is relevant only to debt-based 
transfer agents; it specifies how long they will wait to get 
paid back before refusing to interact with that partner again. 
Results show that the impact of variations in the tolerated 
delay is minimal compared to the impacts of the other 
parameters we varied. We, therefore, set tolerated delay at 
five years, which is in line with our previous publication 
(Aktipis et al., 2016).

Here we report the survival of agents (i.e., households), 
as a proxy for the ecological viability of these strategies. 
However, we have also run evolutionary versions of the 
model (i.e., versions in which agents can reproduce), and 
we present preliminary results from those simulations in the 
Supplementary Information (Fig. S2).

We used two different measures to evaluate the perfor-
mance of the two sharing strategies. First, we calculated the 
ratio of runs resulting in the survival of at least one agent 
from the initial population of N agents at the end of the 
runs (time step 100). This is a measure of the effectiveness 
of adopting a specific sharing strategy given a set of con-
ditions (i.e., network topology, group size, and correlation 
of shocks). Given a specific combination of parameters, 
this ratio is expressed as the number of runs ending with at 
least one surviving agent over the total number of runs (i.e., 
10,000 runs). Second, we examined the proportion of herds 
surviving at the end of each run (time step 100) calculated 
for each combination of the parameters as the median value 
from all 10,000 runs over the initial N. Finally, because the 
simulations’ results are not normally distributed and because 
our sample size is so large that p-values alone may not be 
sufficient to draw strong conclusions from our results, we 
have included two additional analyses. One of these is a 
Mann Whitney U test (Hollander & Wolfe, 1973) (the results 
of which are presented throughout this section and in Sup-
plementary Information), and the other is a report simply of 
all of the conditions in which the survival advantage of the 
need-based strategy is greater than 5% over the debt-based 
strategy (presented at the end of the results section).

We used the Mann–Whitney U statistic to test whether 
the need-based strategy has stochastic dominance compared 
with the debt-based strategy. This allows us to verify the null 
hypothesis that results from both strategies follow the same 
distribution, quantifying the probability that a randomly 

Fig. 1  Proportion of herds surviving (y-axis) as a function of time 
(x-axis), for three network topologies (regular, small-world and pref-
erential attachment), N = 30, when there is no correlation of shocks. 
Need-based agents significantly outperform debt-based agents across 
all network topologies (see Table 3 and Tables S1-S5)

◂
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selected datum from a first set of results (e.g., the need-
based strategy results) is higher or lower than another datum 
randomly selected from a different set of results (e.g., the 
debt-based strategy results). Some differences between the 
performance of the strategies in the model are small, and 
the ρ statistic allows us to evaluate whether the effect size 
is meaningful.

The ρ statistic has values ranging from zero to one. A 
value of 0.5 means that the two sets of data overlap. The 
closer it is to 1, the greater the stochastic dominance of the 
first set of results; the closer it is to 0, the greater the sto-
chastic dominance of the second set of results. To define the 
statistical significance of the values obtained by running the 
Mann–Whitney U test, we have combined the ρ statistic and 
p-values to derive a cut-off. If the value of the ρ statistic is 
between 0.49 and 0.51, we considered this a confirmation 
of the null hypothesis that two distributions of data overlap 
and therefore, there is no difference in the performance of 
the need-based and debt-based strategies.

Network Topology

Regardless of network topology, agents using the need-
based rule outperform agents using a debt-based rule when 
shocks are uncorrelated. In Fig. 1 we show the proportion 
of herds surviving over time as the simulations progress. 
Table 1 shows the proportion of runs ending with at least 
one surviving agent (see also Table 3 and Tables S1-S2 in 
Supplementary Information, which provides a measure of 
the effect size calculated as � from the Mann Whitney U 
test). If we compare survival across different network topolo-
gies, we can see that more agents in preferential attachment 
networks survive, on average, than do agents in regular 
and small-world networks when N < 50 (see Table 1). The 
improvement in survival for agents in modular preferential 

attachment networks (compared to other networks) is signifi-
cant for agents following either transfer rule (see Fig. 1a, c 
and the first row of Table 1). In preferential attachment net-
works, sub-groups of nodes are highly interconnected within 
groups but loosely connected outside them, which can help 
to limit the impact of shocks on the network as a whole. As 
a result, the difference in performance between need-based 
and debt-based systems is smaller for the preferential attach-
ment network structure compared to other network structures 
(this difference in performance is also limited to no correla-
tion of shocks and networks of small size, i.e., N < 60 when 
the correlation is 0.1 and N < 40 when the correlation is 0.2. 
See Table S2 in Supplementary Information for details about 
the effect size as � from the Mann Whitney U test).

Although, on average, the proportion of runs ending with 
at least one surviving agent is the same for both strategies 
when N > 30 (see rows 2 and 3 in Table 1), Mann Whitney U 
test effect size � shows that, when shocks are uncorrelated, 
the need-based rule stochastically dominates the debt-based 
rule for all values of N (Mann Whitney U test ρ > 0.51 and 
p-value < 0.05 in all cases, except for preferential attachment 
networks with N = 80, where � = 0.508, but p-value < 0.05; 
see first column of Tables 3, S1-S2, and first column of 
Tables S3-S5).

Network Size

In order to see how the size of a network affects the ability 
of agents to survive, we considered a small-world network, 
 pshocks = 0.1, 0.5, and 1, and varied network size (see Fig. 
S3a-f and Table 2). Particularly for networks with N < 100 
and low correlation of shocks  (pshocks = 0.1), agents fol-
lowing a need-based transfer rule significantly outper-
formed those following a debt-based transfer rule (Mann 
Whitney U test derived � = 0.553 when N = 30, � = 0.546 

Table 1  The proportion of runs ending with at least one surviving agent at time round = 100, varying the size of the networks (N = 30, 50, 100). 
This table shows a subset of the results obtained by systematically varying N. NBT = need-based transfer rule, DBT = debt-based transfer rule
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when N = 50, and � = 0.519 when N = 100; see Table 3, 
and Table S3 for details). As network size increases, sur-
vival rates increase for agents following both rules, though 
the need-based rule continues to perform better than the 
debt-based rule as long as the correlation of shocks is low 
or intermediate (see Table 2a and the second column of 
Table 3 for Mann Whitney U test � values). As the corre-
lation of shocks increases, the survival of both strategies 
diminishes, and the advantage of the need-based strategy 
over the debt-based strategy becomes smaller and even-
tually not significant (see Table 2b and sixth column of 
Tables 3 and S3).

When shocks are completely correlated  (pshocks = 1), the 
Mann–Whitney U test reveals that the performances of the 
need-based and debt-based strategies are not different (see 
Table 2c and last column of Tables 3 and S3).

Correlation of Shocks

If everyone in a social network experiences a severe 
shock simultaneously, no one may be in a position to 
help anyone else. To investigate the effects of synchro-
nicity of shocks, we investigated three network sizes 
(N = 30, 50, 100) and varied the correlation of shocks 

 (pshocks = [0,1]) from a scenario in which all shocks are 
uncorrelated (i.e., an idiosyncratic scenario) to a sce-
nario in which all shocks are completely correlated (i.e., 
a systemic scenario), affecting all agents at the same 
time (see Fig. 2). This probability,  pshocks, is the likeli-
hood that a shock will affect all agents in a network 
at the same time. When  pshocks = 0, a shock is likely 
to affect just a single agent in the network at time t. 
At the other extreme, when  pshocks = 1, all agents from 
the same network are affected by the same shock at 
the same time. We also considered intermediate sce-
narios by varying the probability of correlated shocks 
from 0 to 1 by steps of 0.1. For low levels of corre-
lated shocks, need-based agents outperform debt-based 
agents (Mann Whitney U test ρ values > 0.51 for all val-
ues of N, when  pshocks < 0.3; ρ values > 0.51 for N < 80, 
when  pshocks < 0.5; ρ values > 0.51 for N < 60, when 
 pshocks < 0.7; see Tables 3 and S3 for details). As the 
probability of correlated shocks increases, survival of 
agents decreases, and both strategies perform equally 
poorly when the probability of correlated shocks is 
higher than 0.7 (see Table 2 showing the proportion of 
runs ending with at least one surviving agent consider-
ing  pshocks = 0.1, 0.5, 1 and Table 3 showing the effect 

Fig. 2  Proportion of herds surviving for agents using debt-based (a-c) 
and need-based (d-e) strategies in small world networks for three dif-
ferent network sizes (N = 30, 50, 100). The figure shows the proportion 
of herds surviving (y-axis) as a function of the correlation of shocks. 

Need-based strategies outperform debt-based strategies for networks of 
size N = 30, 50, 100 and correlation of shocks < 0.5 when N = 30, 50 
and correlation of shocks < 0.3 when N = 100 (Mann Whitney U test � 
> 0.51; see Tables 2 and 3 for details)
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size � from the Mann Whitney U test: when  pshocks > 0.7 
neither strategy stochastically dominates � < 0.51, 
except for the specific combination of parameters N = 60 
and  pshocks = 0.8).

Conditions in which the Survival Advantage 
is Greater than 5% for Need‑Based vs. 
Debt‑Based Strategies

In order to identify the combinations of conditions in which 
the difference between need-based and debt-based strategies 
is largest, we considered all the combinations of parameters in 
which need-based agents had at least a 5% survival advantage 
over the debt-based agents. We calculated the difference of 
median herds surviving at the end of the simulations (t = 100) 
(see Eq. 1).

where MNBT
i,j

 is the matrix of the median herds surviving of 
need-based strategy networks at the end of the simulations 

(1)advantageNBT over DBT =

MNBT
i,j

−MDBT
i,j

MDBT
i,j

in which columns stay for different values of  pshocks (from 0 
to 1 by 0.1) and rows represent network size (from 30 to 100 
by 10);

MDBT
i,j

 is the matrix of the median herds surviving of debt-
based strategy networks at the end of the simulations in which 
columns stay for different values of  pshocks (from 0 to 1 by 0.1) 
and rows represent network size (from 30 to 100 by 10);

and MDBT
i,j

> 0.

Small World Networks

We found that, in small world networks, when the probability 
of concurrent shocks is low  (pshocks <  = 0.2), the need-based 
rule outperforms the debt-based rule by 5% or more in 50% of 
cases. When the probability of concurrent shocks is intermedi-
ate (0.3 <  =  pshocks < 0.5) need-based agents have an advantage 
of 5% or more in 37.5% of cases. When  pshocks = 0.5 the advan-
tage of 5% or more is in 25% of cases and when  pshocks = 0.6 
it is in 12.5% of cases. Finally, when  pshocks > 0.6, need-based 
rule systems never outperform debt-based rule systems (see 
Table S6). The general pattern of results fits our earlier find-
ings that for lower probabilities of correlated shocks, need-
based transfer agents significantly outperform debt-based 

Table 2  The proportion of runs resulting in the survival of at least 
one agent, varying the size of the networks (N = 30, 50, 100) and the 
correlation of shocks  (pshocks = 0.1, 0.5, 1, in panels a, b, c, respec-

tively). This table shows the results obtained by systematically vary-
ing N and  pshocks. NBT = need-based transfer rule, DBT = debt-based 
transfer rule
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transfer agents (see Tables 3 and S3). There was only one 
combination of parameters where the debt-based strategy out-
performed the need-based strategy in small-world networks: 
70 agents at an intermediate shock correlation  (pshocks = 0.5). 
However, this combination of parameters had no effect size 
and was not statistically significant in our earlier analyses (see 
Tables 3 and S3).

Regular Networks

In regular networks, when the probability of shocks is 
low  (pshocks <  = 0.2), the need-based rule outperforms 
the debt-based rule by 5% or more in 58.3% of cases. 
When the probability of concurrent shocks is intermediate 
(0.3 <  = pshocks < 0.5) need-based agents have an advan-
tage of 5% or more in 43.75% of cases. When  pshocks = 0.5, 
the advantage of 5% or more appears in 25% of cases; when 
 pshocks = 0.6 they have this advantage in 12.5% of cases. Finally, 
when  pshocks > 0.6, need-based rule systems never outperform 
debt-based rule systems (see Table S7). There were no combi-
nations of parameters in which the debt-based agents outper-
formed the need-based agents in regular networks.

Preferential Attachment Networks

Finally, in preferential attachment networks, when the prob-
ability of shocks is low  (pshocks <  = 0.2), the need-based rule 

outperforms the debt-based rule by 5% or more in 16.67% of 
cases. When the probability of concurrent shocks is interme-
diate (0.3 <  =  pshocks < 0.5) need-based agents have an advan-
tage of 5% or more in 25% of cases. When  pshocks = 0.5, need-
based agents have an advantage of 5% or more in 12.5% of 
cases, and when  pshocks = 0.6 they have an advantage in 25% 
of cases. Finally, when  pshocks > 0.6, need-based rule systems 
never outperform debt-based rule systems (see Table S8). 
Debt-based agents did not outperform the need-based agents 
under any parameter combinations in preferential attachment 
networks.

Discussion

We created an agent-based model to investigate how the 
network topology, the size of the network, and the cor-
relation of shocks affected the viability of need-based and 
debt-based transfer strategies. We found that agents sur-
vived longer in modular preferential attachment networks 
than in regular and small-world networks. We also found 
that larger network sizes increased survival, that higher 
correlations among shocks decreased survival, and that 
agents following a need-based transfer rule were gener-
ally more likely to survive than those following a debt-
based transfer strategy. This advantage of need-based over 
debt-based strategies was especially clear in modular and 
small networks when correlations among shocks were low. 

Table 3  Small World Networks. This table shows the effect size ρ 
calculated from the Mann–Whitney U test normalized by the product 
of sizes of groups (see Tables S3-S5 in Supplementary for associated 
p-values). Columns represent different values for  pshocks while rows 
represent different network sizes. We can arbitrarily set two thresh-
olds at 0.49 and 0.51, assuming that all values in between are close 
enough to 0.5 to be considered “as if 0.5” and therefore showing that 

there is no stochastic dominance of either group. This arbitrary cut-
off is confirmed by p-values (see Tables S3-S5 in Supplementary). 
Values outside that interval (0.49—0.51) are presented in red. All 
values shown in red are for cases in which there is stochastic domi-
nance of need-based transfers over debt-based transfers; in no cases 
did debt-based transfers have stochastic dominance over need-based 
transfers
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Although there were conditions in which the need-based 
and debt-based strategies did equally well (e.g., when 
shocks were highly correlated), there were no conditions 
in which the debt-based strategy outperformed the need-
based strategy.

Limitations of the Success of Need‑Based Over 
Debt‑Based Transfers

Transfers to those in need, often with no expectation of 
repayment, are common in human risk-pooling systems 
such as central-place food sharing among foragers and the 
osotua system of the Maasai (Bird et al., 2002; Cronk et al., 
2019). This suggests that need-based transfer systems may 
have an adaptive advantage over other transfer rules (Cronk 
& Aktipis, 2021). As we have seen, the need-based sharing 
rule outperforms the debt-based sharing rule when networks 
are modular and small and when shocks are not highly corre-
lated. However, the advantage of need-based strategies over 
debt-based strategies disappears when shocks are highly cor-
related, and both strategies do equally poorly.

Does the Modularity of Networks Increase their 
Resilience?

Networks that are more modular tend to be more resilient to 
perturbations (Ash & Newth, 2007; Bettencourt et al., 2007; 
Bullmore & Sporns, 2012; Eriksen et al., 2003; Garas et al., 
2008; Guimera et al., 2005). Modular networks are typically 
more resilient against cascading failures. Self-contained or 
modular components can help to isolate shocks and prevent 
the cascade of negative effects through the network (Ash & 
Newth, 2007). However, scale-free networks can sometimes 
be more vulnerable to targeted attacks than other networks 
if those attacks are concentrated on more connected nodes 
(Lenzu & Tedeschi, 2012).

Generally speaking, however, networks that are less mod-
ular (e.g., regular networks and small-world networks) are 
more vulnerable to the effects of shocks. Future work should 
investigate which characteristics of preferential attachment 
networks are driving this effect—in particular, whether the 
modularity of the network is the key factor or whether other 
network factors drive the effect. In our simulations, prefer-
ential attachment networks also have a higher average degree 
(i.e., the number of connections or edges that nodes have to 
other nodes) and higher average Eigenvector centrality (i.e., 
a measure of the influence of a node in a network).

How relevant this finding is to the social networks of 
Maasai and other pastoralists is unclear. Although we do 
know that some human social networks are modular (e.g., 
Newman, 2006), we do not know the structure of real-world 
risk-pooling networks specifically. Information about such 

networks’ parameters could be used as the basis for future 
efforts to create computer simulations of such networks.

Correlated Disasters Strain the Resilience 
of Resource Transfer Systems

Our finding that correlated disasters lead to much lower 
survival than uncorrelated ones replicates an earlier 
model of osotua networks (Hao et al.,  2015b) and is 
similar to that of a model of shocks in financial systems 
(Steinbacher et al., 2016). The authors of that paper argue 
that the detrimental impact of systemic shocks comes 
from the fact that the shocks themselves reduce the wealth 
of each node of the network in the system at the same 
time, which makes them more vulnerable to shocks in 
subsequent periods. Hence, large shocks are likely to be 
followed by cascading defaults, thereby destabilizing the 
whole system.

When shocks are highly correlated, the result may be 
that no transfers occur because no one can afford to help 
anyone else. Such situations have been known to arise dur-
ing severe famines, as during the Emutai period among 
the Maasai mentioned in the introduction. Similarly, in the 
1960s, the Ik, a group of former hunter-gatherers in north-
eastern Uganda, suffered from such a severe famine that 
an ethnographer present at the time noted a marked lack of 
sharing, even among close kin (Turnbull, 1972). Although 
that ethnographer interpreted the lack of sharing as an aspect 
of their cultural traditions (rather than as a response to their 
extremely dire circumstances), subsequent work has shown 
that their culture actually celebrates and encourages shar-
ing and that Ik routinely share with those in need when they 
are able to do so (Townsend et al., 2020). These findings 
from the field are consistent with the model results showing 
that correlated shocks present a unique challenge to overall 
survival in a network, even when generous sharing rules are 
in place.

The superiority of need-based transfers over debt-based 
transfers in these models can be attributed to the simple fact 
that debt-based agents sever ties with other agents who, par-
ticularly in a volatile environment, might actually be helpful 
to them at some point in the future. Need-based agents, in 
contrast, do not expect to be repaid and so maintain all their 
partnerships, thus increasing the likelihood that they will 
receive help when they need it.

Why Do Debt‑Dased Transfers Continue to Exist?

This leads to the question of why need-based and debt-
based transfers coexist as they do among the Maasai and 
in many other societies around the world. We propose 
that each one is appropriate in specific but quite different 
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circumstances. When needs arise on a regular, predict-
able basis, it is possible for people to agree to a bal-
anced exchange of favors: You help me today, I’ll help 
you tomorrow. When such favors are not repaid, it also 
makes sense to end the relationship and try again with 
someone else. In these debt-based relationships, the pos-
sibility that the relationship will end because of a lack 
of repayment makes individuals wary about engaging in 
debt-based interactions with valued partners. It also may 
be hard to enforce repayment in this kind of situation. 
For example, Samburu do not engage in esile transactions 
with affines, brothers, or isotuatin: “you could not argue 
with them if they don’t repay you” (Perlov, 1987:185). 
But when needs arise unpredictably, it is sensible to sim-
ply help those in need so that they will still be around 
to help you if you yourself are in need at some point in 
the future.

This is also well illustrated by a pattern of sharing 
called ‘neighboring’ that we have observed among ranch-
ers in the American Southwest (Cronk, 2015; Cronk et 
al., 2019, Cronk et al., 2021). Neighboring has two varie-
ties, one that corresponds with debt-based transfers and 
another that corresponds with need-based transfers. For 
help with predictable chores, such as rounding up live-
stock for branding or marketing, ranchers agree to trade 
favors in the form of skilled labor, and most ranchers 
expect such shared labor to be repaid. But when needs 
arise unpredictably (e.g., due to injuries, illnesses, and 
deaths), most ranchers provide help to those in need with 
no expectation of any repayment beyond a similar kind-
ness should they themselves ever suffer from a similarly 
unpredictable need.

Network Sizes and Pastoralist Survival

In our models, a major determinant of agents’ survival 
was simply the sizes of the networks they were in: agents 
who happened to be in large networks survived, on aver-
age, at higher rates than agents in smaller networks. This 
may have implications for the survival of pastoralists and 
pastoralism in the real world, as well. If pastoralist com-
munities are shrinking due to, for example, outmigration 
and the adoption of other subsistence modes, this could 
reduce the viability of their risk-pooling networks and 
threaten the survival of such communities even further. 
However, this effect might be counterbalanced, at least in 
part, if support from other economic activities, such as 
wage labor, enabled them to manage the risks of pasto-
ralism in other ways such as improving veterinary care, 
buying commercial insurance (e.g., Bertram-Huemmer & 
Kraehnert, 2018; Takahashi et al., 2018), or simply saving 
money in anticipation of hard times.

Need‑Based Transfers may be Relevant for Disaster 
Response and Recovery

Our findings may have implications for real-world disas-
ter response. When disasters occur asynchronously in the 
model, agents survive longer if they use a need-based trans-
fer strategy rather than a debt-based strategy and if networks 
are larger and more modular. Because it may be difficult in 
many circumstances to simply create larger or more modu-
lar networks, perhaps the most important take-home mes-
sage is that, when disasters and other negative events arise 
unpredictably, it may be more adaptive to simply give to 
those in one’s network who are in need if one is able to do 
so and to do so without any expectation of repayment, rather 
than to give with the understanding that the relationship will 
end if the gift is not repaid. Such spontaneous helping net-
works often do emerge in the aftermath of disasters, with 
individuals helping strangers without expecting anything in 
return (Ripley, 2009; Solnit, 2010). For example, after the 
1906 earthquake in San Francisco, even traditionally market-
driven exchanges, such as food deliveries and transportation, 
became need-based, with food being distributed and public 
transportation running for free until after the crisis passed 
(Solnit, 2010). These examples, combined with the model-
ling results we report above, suggest that need-based helping 
systems may be an important part of the human toolkit for 
surviving disasters.

Glossary

Social Network 
Analysis (SNA)   is the process of investigating 

social structures through the use 
of networks and graph theory. It 
characterizes networked struc-
tures in terms of nodes (i.e., the 
entities considered as the single 
units for the analysis, which may 
be single individuals, groups of 
individuals, or different types of 
actors, such as nations or firms) 
and the edges, also referred to as 
links or ties, which represent the 
dyadic relationships or interac-
tions that connect the nodes.

Regular Network  In graph theory, a regular graph 
(or network) is a graph where 
each node has the same number 
of neighbors. In other words, 
every node has the same degree 
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(i.e., number of connections with 
other nodes).

Small World Network  A small world network is a net-
work where the typical distance, 
L, between two randomly cho-
sen nodes (the number of steps 
required) grows proportionally 
to the logarithm of the number 
of nodes N in the network (Watts 
& Strogatz, 1998). At the same 
time, the clustering coefficient 
is not small. In the context of 
a social network, this results in 
the small world phenomenon of 
strangers being linked by a short 
chain of acquaintances. Many 
empirical graphs show the small 
world effect, e.g., social net-
works, the underlying architec-
ture of the Internet, wikis such as 
Wikipedia, and gene networks.

Preferential 
Attachment Network  Preferential attachment is the 

mechanism used in generating the 
networks. Intuitively, preferential 
attachment can be understood if we 
think in terms of social networks 
connecting people. Here a link 
from A to B means that person A 
"knows" a person B. Heavily linked 
nodes represent well-known people 
with lots of relations. When new-
comers enter a community, they are 
more likely to become acquainted 
with one of those more visible 
people rather than with a relative 
unknown. The Barabási–Albert 
model (Barabási & Albert, 1999) is 
an algorithm for generating modu-
lar random scalefree networks 
using a preferential attachment 
mechanism. Several natural and 
human made systems, including 
the Internet, citation networks, and 
some social networks are thought 
to be approximately scale-free and 
certainly contain few nodes (called 
hubs) with unusually high degree 
as compared to the other nodes of 
the network.

Degree   The degree of a node in a network is the 
number of connections or edges that con-
nect the node to other nodes (see Free-
man, 1978). An edge is defined as a line 
segment that connects two nodes.

Modularity  Modularity is one measure of the struc-
ture of networks or graphs. It is designed 
to measure the strength of division of a 
network into modules (also called groups, 
clusters or communities; Newman, 2006). 
Networks with high modularity have 
dense connections between the nodes 
within modules but sparse connections 
between nodes in different modules.
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